Journal of Pathology Informatics (Jan 2020)

TissueWand, a rapid histopathology annotation tool

  • Martin Lindvall,
  • Alexander Sanner,
  • Fredrik Petré,
  • Karin Lindman,
  • Darren Treanor,
  • Claes Lundström,
  • Jonas Löwgren

DOI
https://doi.org/10.4103/jpi.jpi_5_20
Journal volume & issue
Vol. 11, no. 1
pp. 27 – 27

Abstract

Read online

Background: Recent advancements in machine learning (ML) bring great possibilities for the development of tools to assist with diagnostic tasks within histopathology. However, these approaches typically require a large amount of ground truth training data in the form of image annotations made by human experts. As such annotation work is a very time-consuming task, there is a great need for tools that can assist in this process, saving time while not sacrificing annotation quality. Methods: In an iterative design process, we developed TissueWand – an interactive tool designed for efficient annotation of gigapixel-sized histopathological images, not being constrained to a predefined annotation task. Results: Several findings regarding appropriate interaction concepts were made, where a key design component was semi-automation based on rapid interaction feedback in a local region. In a user study, the resulting tool was shown to cause substantial speed-up compared to manual work while maintaining quality. Conclusions: The TissueWand tool shows promise to replace manual methods for early stages of dataset curation where no task-specific ML model yet exists to aid the effort.

Keywords