Virology Journal (Nov 2024)
Preferential cleavage of the coronavirus defective viral genome by cellular endoribonuclease with characteristics of RNase L
Abstract
Abstract In testing whether coronavirus defective viral genome 12.7 (DVG12.7) with transcription regulating sequence (TRS) can synthesize subgenomic mRNA (sgmRNA) in coronavirus-infected cells, it was unexpectedly found by Northern blot assay that not only sgmRNA (designated sgmDVG 12.7) but also an RNA fragment with a size less than sgmDVG 12.7 was identified. A subsequent study demonstrated that the identified RNA fragment (designated clvDVG) was a cleaved RNA product originating from DVG12.7, and the cleaved sites were located in the loop region of stem‒loop structure and after UU and UA dinucleotides. clvDVG was also identified in mock-infected HRT-18 cells transfected with DVG12.7 transcript, indicating that cellular endoribonuclease is responsible for the cleavage. In addition, the sequence and structure surrounding the cleavage sites can affect the cleavage efficiency of DVG12.7. The cleavage features are therefore consistent with the general criteria for RNA cleavage by cellular RNase L. Furthermore, both the cleavage of rRNA and the synthesis of clvDVG were also identified in A549 cells. Because (i) the cleavage sites occurred predominantly after single-stranded UA and UU dinucleotides, (ii) the sequence and structure surrounding the cleavage sites affected the cleavage efficiency, (iii) the cleavage of rRNA is an index of the activation of RNase L, and (iv) the cleavage of both rRNA and DVG12.7 was identified in A549 cells, the results together indicated that the preferential cleavage of DVG12.7 is correlated with cellular endoribonuclease with the characteristics of RNase L and such cleavage features have not been previously characterized in coronaviruses.
Keywords