Solar (Sep 2022)

Optical Property and Stability Study of CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>NH<sub>3</sub>)<sub>3</sub>Pb<sub>4</sub>I<sub>13</sub> Ruddlesden Popper 2D Perovskites for Photoabsorbers and Solar Cells and Comparison with 3D MAPbI<sub>3</sub>

  • Kakaraparthi Kranthiraja,
  • Sujan Aryal,
  • Mahdi Temsal,
  • Mohin Sharma,
  • Anupama B. Kaul

DOI
https://doi.org/10.3390/solar2040023
Journal volume & issue
Vol. 2, no. 4
pp. 385 – 400

Abstract

Read online

Three dimensional (3D) perovskite solar cells (PSCs) are a promising candidate for third-generation photovoltaics (PV) technology, which aims to produce efficient photon conversion devices to electricity using low-cost fabrication processes. Hybrid organic-inorganic perovskites for-lmed using low-cost solution processing are explored here, which have experienced a stupendous rise in power conversion efficiency (PCE) over the past decade and serve as a prime candidate for third-generation PV systems. While significant progress has been made, the inherent hygroscopic nature and stability issue of the 3D perovskites (3DPs) are an impediment to its commercialization. In this work, we have studied two-dimensional (2D) organometallic halide (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1) layered perovskites in the Ruddlesden Popper structure, represented as BA2MA3Pb4I13 for the n = 4 formulation, for both photoabsorbers in a two-terminal architecture and solar cells, given that these material are considered to be inherently more stable. In the two-terminal photo absorber devices, the photocurrent and responsivity were measured as a function of incoming laser wavelength, where the location of the peak current was correlated to the emission spectrum arising from the 2DP film using photoluminescence (PL) spectroscopy. The 2D (BA)2(MA)3Pb4I13 films were then integrated into an n-i-p solar cell architecture, and PV device figures of merit tabulated, while our 3D MAPbI3 served as the reference absorber material. A comparative study of the 3DP and 2DP film stability was also conducted, where freshly synthesized films were inspected on FTO substrates and compared to those exposed to elevated humidity levels, and material stability was gauged using various material characterization probes, such as PL and UV-Vis optical absorption spectroscopy, scanning electron microscopy and X-ray diffraction. While the PCE of the 3D-PSCs was higher than the 2D-PSCs, our results confirm the enhanced environmental stability of the 2DP absorber films compared to the 3DP absorbers, suggesting their promise to address the stability issue broadly encountered in 3D PSCs toward third-generation PV technology.

Keywords