Biology (Oct 2024)
BDNF Differentially Affects Low- and High-Frequency Neurons in a Primary Nucleus of the Chicken Auditory Brainstem
Abstract
Neurotrophins are proteins that mediate neuronal development using spatiotemporal signaling gradients. The chicken nucleus magnocellularis (NM), an analogous structure to the mammalian anteroventral cochlear nucleus, provides a model system in which signaling between the brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) is temporally regulated. In the NM, TrkB expression is high early in development (embryonic [E] day 9) and is downregulated until maturity (E18–21). It is currently unknown how BDNF–TrkB signaling affects neuronal properties throughout development and across a spatial (i.e., frequency) axis. To investigate this, we exogenously applied BDNF onto NM neurons ex vivo and studied intrinsic properties using whole-cell patch clamp electrophysiology. Early in development (E13), when TrkB expression is detectable with immunohistochemistry, BDNF application slowed the firing of high-frequency NM neurons, resembling an immature phenotype. Current measurements and biophysical modeling revealed that this was mediated by a decreased conductance of the voltage-dependent potassium channels. Interestingly, this effect was seen only in high-frequency neurons and not in low-frequency neurons. BDNF–TrkB signaling induced minimal changes in late-developing NM neurons (E20–21) of high and low frequencies. Our results indicate that normal developmental downregulation of BDNF–TrkB signaling promotes neuronal maturation tonotopically in the auditory brainstem, encouraging the appropriate development of neuronal properties.
Keywords