NeuroImage (Jul 2020)

MRI size assessment of cerebral microvasculature using diffusion-time-dependent stimulated-echo acquisition: A feasibility study in rodent

  • D.K. Lee,
  • M.S. Kang,
  • H. Cho

Journal volume & issue
Vol. 215
p. 116784

Abstract

Read online

In this study, a stimulated-echo (STE) method was employed to robustify the cerebral vessel size estimation near air-tissue, bone-tissue interfaces, and large vessels. The proposed solution is to replace the relaxation rate change from gradient-echo (GRE) with that from STE with long diffusion time after the injection of an intravascular contrast agent, superparamagnetic iron oxide nanoparticles. The corresponding diffusion length of STE is shorter than the length over which the unwanted macroscopic field inhomogeneities but is still longer than the correlation length of the fields induced by small vessels. Therefore, the unwanted field inhomogeneities are refocused, while preserving microscopic susceptibility contrast from cerebral vessels. The mean vessel diameter (dimensionless) derived from the diffusion-time-varying STE method was compared to the mean vessel diameter obtained by a conventional spin-echo (SE) and GRE combination based on Monte-Carlo proton diffusion simulations and in vivo rat experiments at 7 ​T. The in vivo mean vessel diameter from the MRI experiments was directly compared to available reference mouse brain vasculature obtained by a knife-edge scanning microscope (KESM), which is considered to be the gold standard. Monte-Carlo simulation revealed that SE and GRE-based MR relaxation rate changes (ΔR2 and ΔR2∗, respectively) can be enhanced using single STE-based MR relaxation rate change (ΔRSTE) by regulating diffusion time, especially for small vessels. The in vivo mean vessel diameter from the STE method demonstrated a closer agreement with that from the KESM compared to the combined SE and GRE method, especially in the olfactory bulb and cortex. This study demonstrates that STE relaxation rate changes can be used as consistent measures for assessing small cerebral microvasculature, where macroscopic field inhomogeneity is severe and signal contamination from adjacent large vessels is significant.

Keywords