Gut Microbes (May 2020)

Bacterial TLR4 and NOD2 signaling linked to reduced mitochondrial energy function in active inflammatory bowel disease

  • Emmanuelle Ruiz,
  • Harrison M. Penrose,
  • Sandra Heller,
  • Hani Nakhoul,
  • Melody Baddoo,
  • Erik F. Flemington,
  • Emad Kandil,
  • Suzana D. Savkovic

DOI
https://doi.org/10.1080/19490976.2019.1611152
Journal volume & issue
Vol. 11, no. 3
pp. 350 – 363

Abstract

Read online

Inflammatory bowel disease (IBD) has been linked to active signaling with bacterial components and reduced mitochondrial ATP production; however, synergism between both of these disease characteristics remains unclear. We aimed to determine in human IBD transcriptomes the link between a transcriptional signature unique to intestinal cells (ICs) with reduced mitochondrial ATP production (Mito-0) and bacteria triggered signaling using a bioinformatics approach. We generated an IC Mito-0 panel comprised of 199 differentially expressed (DE) transcripts mediated by reduced mitochondrial ATP function (DEGseq, log2 fold-change > |2|, p < .001). Transcripts from this panel were involved in diverse biological functions including regulation of mitochondrial energy (lower ATP), extracellular matrix, cell–cell contact, cytoskeleton, growth, metabolism, and inflammation. Next, unsupervised hierarchical clustering showed that the Mito-0 panel distinctly separated inflamed IBD from non-inflamed transcriptomes, which was also supported by principal component analysis (PCA) revealing distinct variation between sample types based on presence of the Mito-0 signature (PCA, p = 8.77e–09). Utilizing three independent IBD cohorts, we validated that 60 novel transcripts from the Mito-0 panel were significantly increased in inflamed tissue. Subsequently, KEGG generated bacterial TLR4 and NOD2 transcriptional signatures strongly associated with inflamed IBD transcriptomes and with the Mito-0 signature as determined by Spearman’s analysis (coefficient of correlation, r = 0.92, p < .05). Herein, using a comprehensive analysis we demonstrated existence of an axis between bacteria triggered signaling and reduced mitochondrial energy function. Furthermore, we identified and validated novel transcripts within this axis as potential drivers and therapeutic targets for human IBD.

Keywords