Plants (Nov 2024)
Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions
Abstract
The intensifying challenges posed by global climate change and water scarcity necessitate enhancements in agricultural productivity and sustainability within arid regions. This review synthesizes recent advancements in genetic engineering, molecular breeding, precision agriculture, and innovative water management techniques aimed at improving crop drought resistance, soil health, and overall agricultural efficiency. By examining cutting-edge methodologies, such as CRISPR/Cas9 gene editing, marker-assisted selection (MAS), and omics technologies, we highlight efforts to manipulate drought-responsive genes and consolidate favorable agronomic traits through interdisciplinary innovations. Furthermore, we explore the potential of precision farming technologies, including the Internet of Things (IoT), remote sensing, and smart irrigation systems, to optimize water utilization and facilitate real-time environmental monitoring. The integration of genetic, biotechnological, and agronomic approaches demonstrates a significant potential to enhance crop resilience against abiotic and biotic stressors while improving resource efficiency. Additionally, advanced irrigation systems, along with soil conservation techniques, show promise for maximizing water efficiency and sustaining soil fertility under saline–alkali conditions. This review concludes with recommendations for a further multidisciplinary exploration of genomics, sustainable water management practices, and precision agriculture to ensure long-term food security and sustainable agricultural development in water-limited environments. By providing a comprehensive framework for addressing agricultural challenges in arid regions, we emphasize the urgent need for continued innovation in response to escalating global environmental pressures.
Keywords