Energies (Aug 2024)
Dynamic K-Decay Learning Rate Optimization for Deep Convolutional Neural Network to Estimate the State of Charge for Electric Vehicle Batteries
Abstract
This paper introduces a novel convolutional neural network (CNN) architecture tailored for state of charge (SoC) estimation in battery management systems (BMS), accompanied by an advanced optimization technique to enhance training efficiency. The proposed CNN architecture comprises multiple one-dimensional convolutional (Conv1D) layers followed by batch normalization and one-dimensional max-pooling (MaxPooling1D) layers, culminating in dense layers for regression-based SoC prediction. To improve training effectiveness, we introduce an advanced dynamic k-decay learning rate scheduling method. This technique dynamically adjusts the learning rate during training, responding to changes in validation loss to fine-tune the training process. Experimental validation was conducted on various drive cycles, including the dynamic stress test (DST), Federal Urban Driving Schedule (FUDS), Urban Dynamometer Driving Schedule (UDDS), United States 2006 Supplemental Federal Test Procedure (US06), and Worldwide Harmonized Light Vehicles Test Cycle (WLTC), spanning four temperature conditions (−5 °C, 5 °C, 25 °C, 45 °C). Notably, the test error of DST and US06 drive cycles, the CNN with optimization achieved a mean absolute error (MAE) of 0.0091 and 0.0080, respectively at 25 °C, and a root mean square error (RMSE) of 0.013 and 0.0095, respectively. In contrast, the baseline CNN without optimization yielded higher MAE and RMSE values of 0.011 and 0.014, respectively, on the same drive cycles. Additionally, training time with the optimization technique was significantly reduced, with a recorded time of 324.14 s compared to 648.59 s for the CNN without optimization at room temperature. These results demonstrate the effectiveness of the proposed CNN architecture combined with advanced dynamic learning rate scheduling in accurately predicting SoC across various battery types and drive cycles. The optimization technique not only improves prediction accuracy but also substantially reduces training time, highlighting its potential for enhancing battery management systems in electric vehicle applications.
Keywords