Mathematics (Jan 2023)

Principal Solutions of Recurrence Relations and Irrationality Questions in Number Theory

  • Angelo B. Mingarelli

DOI
https://doi.org/10.3390/math11020262
Journal volume & issue
Vol. 11, no. 2
p. 262

Abstract

Read online

We apply the theory of disconjugate linear recurrence relations to the study of irrational quantities in number theory. In particular, for an irrational number associated with solutions of linear three-term recurrence relations, we show that there exists a four-term linear recurrence relation whose solutions show that the number has an irrational square if and only if the four-term recurrence relation has a principal solution of a certain type. The result is extended to higher-order recurrence relations, and a transcendence criterion can also be formulated in terms of these principal solutions. The method generates new series expansions of positive integer powers of ζ(3) and ζ(2) in terms of Apéry’s now classic sequences.

Keywords