Revista Brasileira de Zootecnia ()
Impact of reproductive and productive rates on levels of inbreeding and genetic gain of pigs through data simulation
Abstract
ABSTRACT The objective of this study was to evaluate the impact of farrowing and mortality rates on inbreeding levels and genetic gain through data simulation. Data came from two real populations A and B, composed of Pietrain and Landrace breed pigs, respectively. To generate the simulated populations, a Fortran-language simulator was developed using the (co)variances of the breeding values and productive and reproductive information obtained from populations A and B, as well as restrictions on mating and animals selected per generation. Two data files were created. The first contained the pedigree of the previous 10 years, with 21,906 and 251,343 animals in populations A and B, respectively. The second included the breeding values for age, backfat thickness, and feed conversion, all of which were adjusted for 110 kg live weight, for both populations; longissimus dorsi muscle depth adjusted for 110 kg live weight, for population A only; and number of live piglets at the fifth day of life per farrowing, for population B only. Three scenarios were simulated by varying the farrowing and mortality rates during the lactation period. Ten generations were simulated, with 30 replicates for each generation and scenario. Inbreeding levels in closed production units increase with productive and reproductive losses, and these reduce the variances of breeding values, selection intensity, and genetic gains by reducing the number of animals available for selection. Actions that maximize farrowing rates are more important than those that minimize mortality rates during the lactation period, since a reduction in simulated farrowing resulted in greater losses of genetic gains.
Keywords