BMC Genomics (Aug 2022)
Proteome-wide analysis of lysine 2-hydroxyisobutyrylation in Frankliniella occidentalis
Abstract
Abstract Background Lysine 2-hydroxyisobutyrylation (Khib) is a novel and conserved post-translational modification (PTM). Frankliniella occidentalis are economically important agricultural pests globally and also notorious for vectoring destructive plant viruses. To better study the disease transmission mechanism of F. occidentalis, it is necessary to conduct in-depth analysis of it. So far, no Khib modification of insects has been reported. Results In this study, a proteome-wide analysis of Khib modifications in F. occidentalis was analyzed for the first time through the combination of high performance liquid chromatography fractionation technology and 2-hydroxyisobutyrylated peptide enrichment and other advanced technologies, 4093 Khib sites were identified on 1125 modified proteins. Bioinformatics and functional enrichment analyses showed that Khib-modified proteins were significantly enriched in many cell compartments and pathways, especially related to various cellular components and biological processes, and were more concentrated in ribosomes and proteasome subunits, involved in energy metabolism, protein synthesis and degradation, compared to the other nine species including Japonica rice, Homo sapiens, P. patens, Botrytis, Ustilaginoidea virens, Saccharomyces cerevisiae, T. gondii, C. albicans, and F. oxysporum. And Khib sites on virus-interacting insect proteins were discovered for the first time, such as cyclophilin and endoCP-GN. Conclusions After three repeated experiments, we found a total of 4093 Khib sites on 1125 proteins. These modified proteins are mainly concentrated in ribosomes and proteasome subunits, and are widely involved in a variety of critical biological activities and metabolic processes of F. occidentalis. In addition, for the first time, Khib modification sites are found on the proteome of F. occidentalis, and these sites could be acted as for the virus interaction, including cyclophilin and endoCP-GN. The global map of 2-hydroxyisobutyrylation in thrips is an invaluable resource to better understand the biological processes of thrips and provide new means for disease control and mitigation of pest damage to crops.
Keywords