Beilstein Journal of Organic Chemistry (May 2015)

Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds

  • Michaela Mühlberg,
  • Michael G. Hoesl,
  • Christian Kuehne,
  • Jens Dernedde,
  • Nediljko Budisa,
  • Christian P. R. Hackenberger

DOI
https://doi.org/10.3762/bjoc.11.88
Journal volume & issue
Vol. 11, no. 1
pp. 784 – 791

Abstract

Read online

To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide–alkyne cycloaddition (CuAAC) and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.

Keywords