Genetics Selection Evolution (Aug 2024)
Marker effect p-values for single-step GWAS with the algorithm for proven and young in large genotyped populations
Abstract
Abstract Background Single-nucleotide polymorphism (SNP) effects can be backsolved from ssGBLUP genomic estimated breeding values (GEBV) and used for genome-wide association studies (ssGWAS). However, obtaining p-values for those SNP effects relies on the inversion of dense matrices, which poses computational limitations in large genotyped populations. In this study, we present a method to approximate SNP p-values for ssGWAS with many genotyped animals. This method relies on the combination of a sparse approximation of the inverse of the genomic relationship matrix ( $${\mathbf{G}}_{\mathbf{A}\mathbf{P}\mathbf{Y}}^\mathbf{-1}$$ G A P Y - 1 ) built with the algorithm for proven and young ( $$\text{APY}$$ APY ) and an approximation of the prediction error variance of SNP effects which does not require the inversion of the left-hand side (LHS) of the mixed model equations. To test the proposed p-value computing method, we used a reduced genotyped population of 50K genotyped animals and compared the approximated SNP p-values with benchmark p-values obtained with the direct inverse of LHS built with an exact genomic relationship matrix ( $${\mathbf{G}}^\mathbf{-1})$$ G - 1 ) . Then, we applied the proposed approximation method to obtain SNP p-values for a larger genotyped population composed of 450K genotyped animals. Results The same genomic regions on chromosomes 7 and 20 were identified across all p-value computing methods when using 50K genotyped animals. In terms of computational requirements, obtaining p-values with the proposed approximation reduced the wall-clock time by 38 times and the memory requirement by ten times compared to using the exact inversion of the LHS. When the approximation was applied to a population of 450K genotyped animals, two new significant regions on chromosomes 6 and 14 were uncovered, indicating an increase in GWAS detection power when including more genotypes in the analyses. The process of obtaining p-values with the approximation and 450K genotyped individuals took 24.5 wall-clock hours and 87.66GB of memory, which is expected to increase linearly with the addition of noncore genotyped individuals. Conclusions With the proposed method, obtaining p-values for SNP effects in ssGWAS is computationally feasible in large genotyped populations. The computational cost of obtaining p-values in ssGWAS may no longer be a limitation in extensive populations with many genotyped animals.