Climate of the Past (Jul 2011)

Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison

  • F. C. Bassinot,
  • C. Marzin,
  • P. Braconnot,
  • O. Marti,
  • E. Mathien-Blard,
  • F. Lombard,
  • L. Bopp

DOI
https://doi.org/10.5194/cp-7-815-2011
Journal volume & issue
Vol. 7, no. 3
pp. 815 – 829

Abstract

Read online

The relative abundance of <i>Globigerinoides bulloides</i> was used to infer Holocene paleo-productivity changes on the Oman margin and at the southern tip of India. Today, the primary productivity at both sites reaches its maximum during the summer season, when monsoon winds result in local Eckman pumping, which brings more nutrients to the surface. On a millennium time-scale, however, the % <i>G. bulloides</i> records indicate an opposite evolution of paleo-productivity at these sites through the Holocene. The Oman Margin productivity was maximal at ~9 ka (boreal summer insolation maximum) and has decreased since then, suggesting a direct response to insolation forcing. On the contrary, the productivity at the southern tip of India was minimum at ~9 ka, and strengthened towards the present. <br><br> Paleo-reconstructions of wind patterns, marine productivity and foraminifera assemblages were obtained using the IPSL-CM4 climate model coupled to the PISCES marine biogeochemical model and the FORAMCLIM ecophysiological model. These reconstructions are fully coherent with the marine core data. They confirm that the evolution of particulate export production and foraminifera assemblages at our two sites were directly linked with the strength of the upwelling. Model simulations at 9 ka and 6 ka BP show that the relative evolution between the two sites since the early Holocene can be explained by the weakening but also the southward shift of monsoon winds over the Arabian Sea during boreal summer.