BMC Research Notes (Jul 2008)

Whole genome amplification and its impact on CGH array profiles

  • Meldrum Cliff,
  • Hill Alyssa,
  • Bowden Nikola A,
  • Talseth-Palmer Bente A,
  • Scott Rodney J

DOI
https://doi.org/10.1186/1756-0500-1-56
Journal volume & issue
Vol. 1, no. 1
p. 56

Abstract

Read online

Abstract Background Some array comparative genomic hybridisation (array CGH) platforms require a minimum of micrograms of DNA for the generation of reliable and reproducible data. For studies where there are limited amounts of genetic material, whole genome amplification (WGA) is an attractive method for generating sufficient quantities of genomic material from miniscule amounts of starting material. A range of WGA methods are available and the multiple displacement amplification (MDA) approach has been shown to be highly accurate, although amplification bias has been reported. In the current study, WGA was used to amplify DNA extracted from whole blood. In total, six array CGH experiments were performed to investigate whether the use of whole genome amplified DNA (wgaDNA) produces reliable and reproducible results. Four experiments were conducted on amplified DNA compared to unamplified DNA and two experiments on unamplified DNA compared to unamplified DNA. Findings All the experiments involving wgaDNA resulted in a high proportion of losses and gains of genomic material. Previously, amplification bias has been overcome by using amplified DNA in both the test and reference DNA. Our data suggests that this approach may not be effective, as the gains and losses introduced by WGA appears to be random and are not reproducible between different experiments using the same DNA. Conclusion In light of these findings, the use of both amplified test and reference DNA on CGH arrays may not provide an accurate representation of copy number variation in the DNA.