PLoS ONE (Jan 2016)

Factors Influencing Intraocular Pressure Changes after Laser In Situ Keratomileusis with Flaps Created by Femtosecond Laser or Mechanical Microkeratome.

  • Meng-Yin Lin,
  • David C K Chang,
  • Yun-Dun Shen,
  • Yen-Kuang Lin,
  • Chang-Ping Lin,
  • I-Jong Wang

DOI
https://doi.org/10.1371/journal.pone.0147699
Journal volume & issue
Vol. 11, no. 1
p. e0147699

Abstract

Read online

The aim of this study is to describe factors that influence the measured intraocular pressure (IOP) change and to develop a predictive model after myopic laser in situ keratomileusis (LASIK) with a femtosecond (FS) laser or a microkeratome (MK). We retrospectively reviewed preoperative, intraoperative, and 12-month postoperative medical records in 2485 eyes of 1309 patients who underwent LASIK with an FS laser or an MK for myopia and myopic astigmatism. Data were extracted, such as preoperative age, sex, IOP, manifest spherical equivalent (MSE), central corneal keratometry (CCK), central corneal thickness (CCT), and intended flap thickness and postoperative IOP (postIOP) at 1, 6 and 12 months. Linear mixed model (LMM) and multivariate linear regression (MLR) method were used for data analysis. In both models, the preoperative CCT and ablation depth had significant effects on predicting IOP changes in the FS and MK groups. The intended flap thickness was a significant predictor only in the FS laser group (P < .0001 in both models). In the FS group, LMM and MLR could respectively explain 47.00% and 18.91% of the variation of postoperative IOP underestimation (R2 = 0.47 and R(2) = 0.1891). In the MK group, LMM and MLR could explain 37.79% and 19.13% of the variation of IOP underestimation (R(2) = 0.3779 and 0.1913 respectively). The best-fit model for prediction of IOP changes was the LMM in LASIK with an FS laser.