Molecular Metabolism (Jul 2018)

A disease-associated Aifm1 variant induces severe myopathy in knockin mice

  • Lena Wischhof,
  • Anna Gioran,
  • Dagmar Sonntag-Bensch,
  • Antonia Piazzesi,
  • Miriam Stork,
  • Pierluigi Nicotera,
  • Daniele Bano

Journal volume & issue
Vol. 13
pp. 10 – 23

Abstract

Read online

Objective: Mutations in the AIFM1 gene have been identified in recessive X-linked mitochondrial diseases. Functional and molecular consequences of these pathogenic AIFM1 mutations have been poorly studied in vivo. Methods/results: Here we provide evidence that the disease-associated apoptosis-inducing factor (AIF) deletion arginine 201 (R200 in rodents) causes pathology in knockin mice. Within a few months, posttranslational loss of the mutant AIF protein induces severe myopathy associated with a lower number of cytochrome c oxidase-positive muscle fibers. At a later stage, Aifm1 (R200 del) knockin mice manifest peripheral neuropathy, but they do not show neurodegenerative processes in the cerebellum, as observed in age-matched hypomorphic Harlequin (Hq) mutant mice. Quantitative proteomic and biochemical data highlight common molecular signatures of mitochondrial diseases, including aberrant folate-driven one-carbon metabolism and sustained Akt/mTOR signaling. Conclusion: Our findings indicate metabolic defects and distinct tissue-specific vulnerability due to a disease-causing AIFM1 mutation, with many pathological hallmarks that resemble those seen in patients. Keywords: Akt/mTOR signaling, Apoptosis-inducing factor (AIF), 1C metabolism, Mitochondria, Mitochondrial diseases, Oxidative phosphorylation