Advanced Membranes (Jan 2024)

In-situ interfacial polymerization of zwitterionic nanofiltration membranes with anti-scaling performance

  • Yue Shen,
  • Gilles Van Eygen,
  • Bin Wu,
  • Chao Wu,
  • Ming-Jie Yin,
  • Yan Zhao,
  • Bart Van der Bruggen,
  • Quan-Fu An

Journal volume & issue
Vol. 4
p. 100095

Abstract

Read online

Mineral scaling caused by multivalent metal ions can significantly hinder the long-term operation of nanofiltration membranes. In this study, in-situ interfacial polymerization including a posttreatment by using a citric acid solution was employed in order to mitigate scaling on the membrane surface. Under the optimal conditions (15 ​min of posttreatment with a 2 ​M citric acid solution), the membrane water permeance increased from 5.76 ​± ​0.2 to 15.1 ​± ​1.8 ​L⋅m−2⋅h−1·bar−1 for the pristine and the optimal membrane, respectively. The molecular weight cut-off of the optimal membrane was 399 ​Da, which allows for the removal of organic micropollutants in groundwater. Furthermore, the resulting membrane showed a Na2SO4 and CaCl2 rejection of 92.5 ​± ​1.9 and 11.4 ​± ​1.3%, respectively. During the anti-scaling tests, the membrane fabricated with this strategy exhibited a minor decline of the water permeance of 33.5% when subjected to the same water recovery process, opposed to 65.8% for the pristine membrane. This proposed fabricating procedure thus provides an effective strategy for retarding membrane scaling in desalination applications.

Keywords