International Journal of Analytical Chemistry (Jan 2022)

Mechanical Performance Test and Numerical Simulation Analysis of Building Steel Plate and Concrete Composite Structure

  • Qian Liu

DOI
https://doi.org/10.1155/2022/2156921
Journal volume & issue
Vol. 2022

Abstract

Read online

The study aims to continuously improve the level of the construction industry, such as the improvement of construction capacity and efficiency and reduction of the project cost and construction period, and find a specific way to improve the development of the construction industry. First, the study analyzes the research status of mechanical properties of horizontal joints, vertical joints, and the overall structure of worldwide prefabricated buildings. Next, the built-in steel fabricated concrete shear wall model is established. Moreover, the quasi-static experimental analysis is conducted on the joints of the fabricated shear wall with built-in section steel. The finite element software is used to analyze the numerical simulation test of the new built-in shear wall. According to the relevant test parameters, the finite element model is constructed, and the parameters are set. Finally, the shear wall model is established and tested by a simulation experiment, and the simulation results are compared with the numerical simulation results. The final results show that the proposed connection mode of the reinforced skeleton and new fabricated joints improves the stability of prefabricated buildings. The use of the quasi-static test to test the relevant performance parameters has a short calculation time, high efficiency, and high parameter optimization accuracy. It can better simulate the actual working conditions and the actual stress-strain and damage failure conditions. Moreover, the conclusion is drawn that the shear wall structure with steel plate concrete has good ductility and deformation capacity. The study has a certain reference significance for the construction optimization of steel plate concrete prefabricated buildings and related research in the future.