International Journal of Applied Earth Observations and Geoinformation (Nov 2024)
Simulating SAR constellations systems for rapid damage mapping in urban areas: Case study of the 2023 Turkey-Syria earthquake
Abstract
This study evaluates the feasibility of using Synthetic Aperture Radar (SAR) constellations for rapid damage mapping in the aftermath of the 2023 Turkey-Syria earthquake. We specifically address the data acquisition latency challenges associated with X- and L-Band SAR constellations, including those operated by U.S. Capella Space, UMBRA Space, European ICEYE, and the Italian/Argentinian SIASGE constellation. Our analysis compares these constellations’ response times with established damage mapping techniques from open-access ESA Sentinel-1A/B and NASA NISAR missions. By integrating USGS shake maps with existing building maps, we demonstrate that the shorter revisit times and higher spatial resolutions of X-band SAR constellations can produce damage maps within hours, complementing the longer-term data provided by ESA and NASA missions. This research highlights the strengths and limitations of both approaches, emphasizing their roles in enhancing earthquake reconnaissance and damage detection efforts.