International Journal of Applied Earth Observations and Geoinformation (Nov 2024)

Simulating SAR constellations systems for rapid damage mapping in urban areas: Case study of the 2023 Turkey-Syria earthquake

  • Riccardo Vitale,
  • Pietro Milillo

Journal volume & issue
Vol. 134
p. 104226

Abstract

Read online

This study evaluates the feasibility of using Synthetic Aperture Radar (SAR) constellations for rapid damage mapping in the aftermath of the 2023 Turkey-Syria earthquake. We specifically address the data acquisition latency challenges associated with X- and L-Band SAR constellations, including those operated by U.S. Capella Space, UMBRA Space, European ICEYE, and the Italian/Argentinian SIASGE constellation. Our analysis compares these constellations’ response times with established damage mapping techniques from open-access ESA Sentinel-1A/B and NASA NISAR missions. By integrating USGS shake maps with existing building maps, we demonstrate that the shorter revisit times and higher spatial resolutions of X-band SAR constellations can produce damage maps within hours, complementing the longer-term data provided by ESA and NASA missions. This research highlights the strengths and limitations of both approaches, emphasizing their roles in enhancing earthquake reconnaissance and damage detection efforts.

Keywords