Scientific Data (Nov 2023)
A manually annotated corpus in French for the study of urbanization and the natural risk prevention
Abstract
Abstract Land artificialization is a serious problem of civilization. Urban planning and natural risk management are aimed to improve it. In France, these practices operate the Local Land Plans (PLU – Plan Local d’Urbanisme) and the Natural risk prevention plans (PPRn – Plan de Prévention des Risques naturels) containing land use rules. To facilitate automatic extraction of the rules, we manually annotated a number of those documents concerning Montpellier, a rapidly evolving agglomeration exposed to natural risks. We defined a format for labeled examples in which each entry includes title and subtitle. In addition, we proposed a hierarchical representation of class labels to generalize the use of our corpus. Our corpus, consisting of 1934 textual segments, each of which labeled by one of the 4 classes (Verifiable, Non-verifiable, Informative and Not pertinent) is the first corpus in the French language in the fields of urban planning and natural risk management. Along with presenting the corpus, we tested a state-of-the-art approach for text classification to demonstrate its usability for automatic rule extraction.