Frontiers in Plant Science (Jan 2023)

Grass-legume mixture and nitrogen application improve yield, quality, and water and nitrogen utilization efficiency of grazed pastures in the loess plateau

  • Ranran Xu,
  • Ranran Xu,
  • Ranran Xu,
  • Wei Shi,
  • Muhammad Kamran,
  • Shenghua Chang,
  • Qianmin Jia,
  • Fujiang Hou

DOI
https://doi.org/10.3389/fpls.2023.1088849
Journal volume & issue
Vol. 14

Abstract

Read online

Grazing on cultivated grassland is a green agricultural model. However, in China's Loess Plateau, the type of cultivated grassland suitable for grazing and the amount of nitrogen application is still unclear, which has led to the failure of this model to be widely implemented. In this context, we set up an experiment using three grass planting types, including monoculture of alfalfa (Medicago sativa L.), monoculture of brome (Bromus inermis L.), and mixed planting of the two forages. Under each planting type, there were six management measures: grazing and no nitrogen application (GN1), grazing and 80 kg ha-1 nitrogen application (GN2), grazing and 160 kg ha-1 nitrogen application (GN3), cutting and no nitrogen application (MN1), cutting and 80 kg ha-1 nitrogen application (MN2), and cutting and 160 kg ha-1 nitrogen application (MN3). To explore the impacts of these treatments on pastures, we studied the effects on the yield, quality, and water use efficiency of the three cultivated grasslands. Results showed that alfalfa monoculture and alfalfa-brome mixed sowing grassland resulted in significantly higher hay yield, crude protein yield, water use efficiency (WUE), precipitation use efficiency (PUE), nitrogen use efficiency (NUE), and agronomic efficiency of nitrogen (AEN) as compared to brome monoculture grassland. In addition, the crude protein, ether extract, and crude ash content of alfalfa monoculture and alfalfa-brome mixture were increased significantly while the contents of neutral detergent fiber (NDF) were reduced, thereby increasing the relative feed value (RFV) during the two years. The forage hay yield, crude protein yield, ether extract, crude ash content, RFV, PUE, and WUE were significantly higher with GN1, GN2, and GN3 treatments than that with MN1 treatment. In contrast, the NDF and acid detergent fiber (ADF) content was significantly lower than the MN1 treatment. Furthermore, the fresh forage yield, crude protein yield, PUE, and WUE of GN3 treatment were significantly higher than that of GN1 and GN2 treatments in both years, while the NUE and AEN were significantly higher in GN2 and GN3 treatments than that of MN3 treatment. Based on these results, alfalfa-brome mixed cropping with the application of 160 kg ha-1 nitrogen under grazing conditions is an appropriate management practice for improving the forage yield, quality, and water- and nitrogen utilization efficiency of cultivated grassland in the Loess Plateau of China. This integrated management model is applicable to the cultivation and utilization of mixed grassland on nutrient-poor land in the Loess Plateau.

Keywords