Neurobiology of Disease (Oct 2019)
Ataxic phenotype with altered CaV3.1 channel property in a mouse model for spinocerebellar ataxia 42
- Shunta Hashiguchi,
- Hiroshi Doi,
- Misako Kunii,
- Yukihiro Nakamura,
- Misa Shimuta,
- Etsuko Suzuki,
- Shigeru Koyano,
- Masaki Okubo,
- Hitaru Kishida,
- Masaaki Shiina,
- Kazuhiro Ogata,
- Fumiko Hirashima,
- Yukichi Inoue,
- Shun Kubota,
- Noriko Hayashi,
- Haruko Nakamura,
- Keita Takahashi,
- Atsuko Katsumoto,
- Mikiko Tada,
- Kenichi Tanaka,
- Toshikuni Sasaoka,
- Satoko Miyatake,
- Noriko Miyake,
- Hirotomo Saitsu,
- Nozomu Sato,
- Kokoro Ozaki,
- Kiyobumi Ohta,
- Takanori Yokota,
- Hidehiro Mizusawa,
- Jun Mitsui,
- Hiroyuki Ishiura,
- Jun Yoshimura,
- Shinichi Morishita,
- Shoji Tsuji,
- Hideyuki Takeuchi,
- Kinya Ishikawa,
- Naomichi Matsumoto,
- Taro Ishikawa,
- Fumiaki Tanaka
Affiliations
- Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Yukihiro Nakamura
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
- Misa Shimuta
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
- Etsuko Suzuki
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
- Shigeru Koyano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Hitaru Kishida
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Fumiko Hirashima
- Department of Rehabilitation Medicine, Flower and Forest Tokyo Hospital, 2-3-6 Nishigahara, Kita-ku, Tokyo 114-0024, Japan
- Yukichi Inoue
- Department of Neurology, Toyama Prefectural Rehabilitation Hospital and Support Center for Children with Disabilities, 36 Shimoiino, Toyama 931-8517, Japan
- Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Noriko Hayashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Nozomu Sato
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Kokoro Ozaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Kiyobumi Ohta
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Jun Yoshimura
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
- Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Taro Ishikawa
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Correspondence to: T. Ishikawa, Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
- Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; Corresponding author at: Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
- Journal volume & issue
-
Vol. 130
p. 104516
Abstract
Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144G > A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168G > A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11–20 weeks and showed Purkinje cell loss at 50 weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.