مجلة جامعة تشرين للبحوث والدراسات العلمية- سلسلة العلوم الهندسية (May 2017)
استخدام تحويلي Top-Hat و Bottom-Hat لتحسين تباين صور الماموغرام
Abstract
التصوير الشعاعي للثدي (الماموغرام) هو تقنية تستخدم على نطاق واسع للكشف عن سرطان الثدي، فبالرغم من وجود تقنيات أخرى مختلفة للكشف عن سرطان الثدي إلا أن التصوير الشعاعي للثدي هو الأسلوب الأكثر موثوقية وفعالية في الكشف المبكر عن سرطان الثدي. إن الصور التي يتم الحصول عليها عن طريق التصوير الشعاعي للثدي هي ذات تباين منخفض وهذا ما يسبب مشكلة لأطباء الأشعة لتشخيص المرض من هذه الصور، إذاً، تستخدم تقنيات معالجة الصورة في الحصول على صور ذات جودة عالية، بهدف استخلاص أي نوع من المعلومات منها، لذلك وضعت العديد من الخوارزميات لتحسين تباين الصورة خلال السنوات الماضية. في هذا العمل، اُقْتُرِحَتْ طريقة لتحسين تباين التكلسات في صور الماموغرام، تعتمد هذه الطريقة على تطبيق تحويلي القبعة العليا Top-Hatوالقبعة السفلى Bottom –Hat والتي تعتمد على العمليات المورفولوجية الرياضية. اختبرت الطريقة على مجموعة صور ذات أنماط مختلفة من نسج الثدي من قاعدة بيانات معيارية mini-Mias . لتقييم أداء خوارزمية التحسين استخدم معيار تحسين التباين CII، ومعيار نسبة ذروة الاشارة الى الضجيج PSNR بعد كل تحسين. تشير النتائج التجريبية أن الخوارزمية المقترحة لديها القدرة على تحسين نظام التشخيص بمساعدة الحاسب (CAD) وخاصة لنسج الثدي الكثيفة. Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information. Many contrast enhancement algorithms have been developed over the years. This work presents a method to enhancement Microcalcifications in digitized mammograms. The method is based Mainly on the combination of Image Processing. The top-Hat and bottom–hat transforms are a techniques based on Mathematical morphology operations. This algorithm has been tested on mini-Mias database which have three types of breast tissues . For evaluation of performance of image enhancement algorithm, the Contrast Improvement Index (CII) and Peak Signal to Noise Ratio (PSNR) have been used. Experimental results suggest that algorithm can be improve significantly overall detection of the Computer-Aided Diagnosis (CAD) system especially for dense breast.