Symmetry (Nov 2020)
Predictions of Ultra-High Energy Cosmic Ray Propagation in the Context of Homogeneously Modified Special Relativity
Abstract
Ultra high energy cosmic rays (UHECRs) may interact with photon backgrounds and thus the universe is opaque to their propagation. Many Lorentz Invariance Violation (LIV) theories predict a dilation of the expected horizon from which UHECRs can arrive to Earth, in some case even making the interaction probability negligible. In this work, we investigate this effect in the context of the LIV theory that goes by the name of Homogeneously Modified Special Relativity (HMSR). In this work, making use of a specifically modified version of the SimProp simulation program in order to account for the modifications introduced by the theory to the propagation of particles, the radius of the proton opacity horizon (GZK sphere), and the attenuation length for the photopion production process are simulated and the modifications of these quantities introduced by the theory are studied.
Keywords