Mathematics (Jun 2021)
Special Functions as Solutions to the Euler–Poisson–Darboux Equation with a Fractional Power of the Bessel Operator
Abstract
In this paper, we consider fractional ordinary differential equations and the fractional Euler–Poisson–Darboux equation with fractional derivatives in the form of a power of the Bessel differential operator. Using the technique of the Meijer integral transform and its modification, fundamental solutions to these equations are derived in terms of the Fox–Wright function, the Fox H-function, and their particular cases. We also provide some explicit formulas for the solutions to the corresponding initial-value problems in terms of the generalized convolutions introduced in this paper.
Keywords