Selekcija i Semenarstvo (Jan 2018)
Creating new genetic variability with the aim of increasing the yield of seed and oil in sunflower
Abstract
Increasing yield of seed and oil in sunflower is certainly one of the most important imperatives in modern sunflower breeding. The aim of this experiment was to cross the sunflower genotypes in order to create a new genetic variation that will contribute in order to increase seed and oil yield. The material for this research included 6 sunflower genotypes selected on the basis of their agronomic and production characteristics. The crossing was done by incomplete dialel method in early morning hours by manual emasculation. The analysis of variance revealed the existence of a statistically significant difference between the genotypes used in crossing, which confirms that the selected parents differ in the examined properties. Comparing parents the highest average value of seed yield per plant was achieved by parent R1 (98.29 g), while the lowest seed yield per plant was achieved with parent R3 (46.52 g). The highest average value of seed yield per plant in the F2 generation was achieved with the combination R5 x R6 (79.75 g), while the lowest value was achieved with the combination R1 x R6 (49.85 g). In terms of oil yield, the highest aver-age value was measured at parent R1 (43.59 g), while in the F2 generation the highest oil yield was achieved by the combination R5 x R6 (38.66 g). Of the total of 15 F2 populations, higher average yield of seed and oil per plant compared to parents were achieved in 4 cross combinations. This result leads to the conclusion that the obtained F2 generations can represent an important source of new genetic variability to be used in the breeding program in order to obtain more productive sunflower hybrids. Calculated coefficient of inheritance, heritability, indicated that depending on the crossing combination, genetic material, non-hereditary factors had a greater or lesser impact on the expression of investigated traits.