Energies (Jun 2024)

Radiative Heat Flux Measurement in a Semi-Industrial Oxyfuel Combustion Chamber with Biomass and Coal

  • Marcel Richter,
  • Dominik König,
  • Jochen Ströhle,
  • Bernd Epple

DOI
https://doi.org/10.3390/en17112735
Journal volume & issue
Vol. 17, no. 11
p. 2735

Abstract

Read online

Oxyfuel is a combustion technology where the oxidant consists mainly of oxygen and carbon dioxide instead of oxygen and nitrogen. Since carbon dioxide has strongly absorbing bands in the thermal spectrum, the radiation properties of the flame change in an oxyfuel atmosphere compared to conventional combustion. When retrofitting an existing air-fired combustion system to an oxyfuel process, the oxygen content in the oxidant must be adjusted so that similar values for heat transfer by radiation are achieved. This measure allows the system to be operated with otherwise unchanged parameters. In this work, the thermal radiation of natural gas, pulverised walnut shells and lignite under an air and oxyfuel atmosphere is investigated in a semi-industrial combustion chamber with water-cooled membrane walls, at different oxygen concentrations and combustion parameters. While the radiative heat fluxes for natural gas with an oxygen content of 28 vol% in the oxidant are significantly higher than those for firing with air, the values for lignite are still below the air-firing, even with an oxygen content of 30 vol%. For walnut shells, the oxyfuel results are close to the air case for all oxygen concentrations between 27 and 33 vol%. The walnut shells show higher radiative emissions than the lignite at the same thermal output. For non-swirled flames, the radiative heat flux is lower than for swirled flames.

Keywords