Scientific Reports (Jul 2024)

Case study on climate change effects and food security in Southeast Asia

  • Daria Taniushkina,
  • Aleksander Lukashevich,
  • Valeriy Shevchenko,
  • Ilya S. Belalov,
  • Nazar Sotiriadi,
  • Veronica Narozhnaia,
  • Kirill Kovalev,
  • Alexander Krenke,
  • Nikita Lazarichev,
  • Alexander Bulkin,
  • Yury Maximov

DOI
https://doi.org/10.1038/s41598-024-65140-y
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Agriculture, a cornerstone of human civilization, faces rising challenges from climate change, resource limitations, and stagnating yields. Precise crop production forecasts are crucial for shaping trade policies, development strategies, and humanitarian initiatives. This study introduces a comprehensive machine learning framework designed to predict crop production. We leverage CMIP5 climate projections under a moderate carbon emission scenario to evaluate the future suitability of agricultural lands and incorporate climatic data, historical agricultural trends, and fertilizer usage to project yield changes. Our integrated approach forecasts significant regional variations in crop production across Southeast Asia by 2028, identifying potential cropland utilization. Specifically, the cropland area in Indonesia, Malaysia, Philippines, and Viet Nam is projected to decline by more than 10% if no action is taken, and there is potential to mitigate that loss. Moreover, rice production is projected to decline by 19% in Viet Nam and 7% in Thailand, while the Philippines may see a 5% increase compared to 2021 levels. Our findings underscore the critical impacts of climate change and human activities on agricultural productivity, offering essential insights for policy-making and fostering international cooperation.