iScience (Aug 2023)

Changes in the hydrophobic network of the FliGMC domain induce rotational switching of the flagellar motor

  • Tatsuro Nishikino,
  • Atsushi Hijikata,
  • Seiji Kojima,
  • Tsuyoshi Shirai,
  • Masatsune Kainosho,
  • Michio Homma,
  • Yohei Miyanoiri

Journal volume & issue
Vol. 26, no. 8
p. 107320

Abstract

Read online

Summary: The FliG protein plays a pivotal role in switching the rotational direction of the flagellar motor between clockwise and counterclockwise. Although we previously showed that mutations in the Gly-Gly linker of FliG induce a defect in switching rotational direction, the detailed molecular mechanism was not elucidated. Here, we studied the structural changes in the FliG fragment containing the middle and C-terminal regions, named FliGMC, and the switch-defective FliGMC-G215A, using nuclear magnetic resonance (NMR) and molecular dynamics simulations. NMR analysis revealed multiple conformations of FliGMC, and the exchange process between these conformations was suppressed by the G215A residue substitution. Furthermore, changes in the intradomain orientation of FliG were induced by changes in hydrophobic interaction networks throughout FliG. Our finding applies to FliG in a ring complex in the flagellar basal body, and clarifies the switching mechanism of the flagellar motor.

Keywords