BMC Complementary and Alternative Medicine (Nov 2011)
Enhancement of antimicrobial activities of whole and sub-fractionated white tea by addition of copper (II) sulphate and vitamin C against <it>Staphylococcus aureus</it>; a mechanistic approach
Abstract
Abstract Background Enhancement of antimicrobial plant products e.g. pomegranate extract by copper (II) sulphate is known. Such combinations have applications in various settings, including the identification of novel compositions to study, treat and control infection. Methods A combination of white tea (WT) (made allowing 10 minutes infusion time at 100°C) was combined with 4.8 mM copper (II) sulphate and tested for antimicrobial effect on the viability of Staphylococcus aureus NCTC 06571. Comparisons were made with green (GT) and black (BT) teas. A WT sub-fraction (WTF Results A 30 minute incubation at room temperature of copper (II) sulphate alone and combined with WT reduced the viability of S. aureus NCTC 06571 by c.a 1 log10 cfu mL-1. GT and BT with copper (II) sulphate negated activity to buffer values. Combined with copper (II) sulphate, vitamin C, WTF and, vitamin C plus WTF all reduced the viability of S. aureus NCTC 06571 by c.a. 3.5 log10 cfu mL-1. Independent experiments showed the results were not due to pH effects. Adding WT or WTF to copper (II) sulphate resulted in increased acidity. Copper (II) sulphate alone and combined with WT required c.a 300 μg mL-1 (final concentration) catalase to restore S. aureus viability, WTF with copper (II) sulphate and added vitamin C required c.a 600 μg mL-1. WT and WTF UV-visible spectra were similar. Conclusions WT showed no efficacy in the combinations tested. WTF was enhanced with copper (II) sulphate and further with vitamin C. WT and WTF increased acidity of copper (II) sulphate possibly via the formation of chemical complexes. The difference in WT/WTF absorbance possibly represented substances less concentrated or absent in WTF. Investigations to establish which WTF component/s and in what proportions additives are most effective against target organisms are warranted.