Microbiology Spectrum (Jun 2022)
Distribution of Culturable Phosphate-Solubilizing Bacteria in Soil Aggregates and Their Potential for Phosphorus Acquisition
Abstract
ABSTRACT Deciphering distribution patterns of phosphate-solubilizing bacteria (PSB) and phosphorus-cycling-related genes in soils is important to evaluate phosphorus (P) transformation. However, the linkage between PSB number and P-cycling-related gene abundance in soils, especially soil aggregates, remains largely unknown. Here, we estimated the numbers of PSB and abundances of P-cycling-related genes (i.e., gcd and bpp) in soil aggregates under different fertilization regimes as well as P-solubilizing performance and plant-growth-promoting ability of PSB. We found that tricalcium phosphate-solubilizing bacteria, phytate-degrading bacteria, and gcd and bpp abundances were more abundant in silt plus clay (silt+clay; <53 μm) than in macroaggregate (250 to 2000 μm) and microaggregate (53 to 250 μm). Fertilization treatment and aggregate fractionation showed distinct effects on PSB number and P-cycling-related gene abundance. We found significantly negative correlation between gcd gene abundance and tricalcium phosphate-solubilizing bacterial number (Col-CaP) and dramatically positive correlation between bpp gene abundance and phytate-degrading bacterial number (Col-Phy). P fractions were responsible for PSB number and P-cycling-related gene abundance. The isolated Pseudomonas sp. strain PSB-2 and Arthrobacter sp. strain PSB-5 exhibited good performances for solubilizing tricalcium phosphate. The inoculation of Pseudomonas sp. PSB-2 could significantly enhance plant fresh weight, plant dry weight, and plant height. Our results emphasized distinct distribution characteristics of PSB and P-cycling-related genes in soil aggregates and deciphered a close linkage between PSB number and P-cycling-related gene abundance. Our findings might guide the isolation of PSB from agricultural soils and provide a candidate plant-growth-promoting bacterium for agro-ecosystems. IMPORTANCE Phosphate-solubilizing bacteria are responsible for inorganic P solubilization and organic P mineralization. Elucidating the linkage between phosphate-solubilizing bacterial number and P-cycling-related gene abundance is important to isolate plant-growth-promoting bacteria for agro-ecosystems. Our findings reveal differentiating strategies of phosphate-solubilizing bacteria in soil aggregates, and the deciphered P fractions show strong effects on distribution patterns of phosphate-solubilizing bacteria and P-cycling-related genes. Additionally, we isolated phosphate-solubilizing bacteria with good plant-growth-promoting ability. This study enriches our knowledge of P cycling in soil aggregates and might guide the production and management of farmland.
Keywords