Inorganics (Dec 2023)
RbEr<sub>2</sub>AsS<sub>7</sub>: A Rubidium-Containing Erbium Sulfide Thioarsenate(III) with (S<sub>2</sub>)<sup>2−</sup> Ligands According to RbEr<sub>2</sub>S(S<sub>2</sub>)[AsS<sub>2</sub>(S<sub>2</sub>)]
Abstract
The new rubidium-containing erbium sulfide thioarsenate(III) with the structured formula RbEr2S(S2)[AsS2(S2)] was obtained from the syntheses of elemental erbium (Er), arsenic sesquisulfide (As2S3) and rubidium sesquisulfide (Rb2S3) with elemental sulfur (S) at 773 K as transparent, orange, needle-shaped crystals. RbEr2AsS7 crystallizes monoclinically in the space group C2/c with a = 2339.86(12) pm, b = 541.78(3) pm, c = 1686.71(9) pm and β = 93.109(3) ° for Z = 8. The crystal structure features complex [AsS2(S2)]3− anions with two S2− anions and a (S2)2− disulfide dumbbell coordinating end-on as ligands for each As3+ cation. Even outside the ligand sphere of As3+, S2− and (S2)2− can be found as sulfide anions. Two distinct Er3+ cations are surrounded by either nine or seven sulfur atoms. The [ErS9] polyhedra are corner- and face-connected, while the [ErS7] units share common edges, both building chains along [010]. These different chains undergo edge connectivity with each other, resulting in the formation of corrugated layers, which are held together by Rb+ in chains of condensed [RbS9] polyhedra. So, a three-dimensional network is generated, offering empty channels along [010] apt to take up the As3+ lone-pair cations. Wavelength-dispersive X-ray spectroscopy verified a molar Rb:Er:As:S ratio of approximately 1:2:1:7 and diffuse reflectance spectroscopy showed the typical f–f transitions of Er3+, while the optical band gap was found to be 2.42 eV.
Keywords