Cancers (Jul 2020)

Anti-Proliferative and Pro-Apoptotic Effects of Short-Term Inhibition of Telomerase In Vivo and in Human Malignant B Cells Xenografted in Zebrafish

  • Silvia Giunco,
  • Manuela Zangrossi,
  • Francesca Dal Pozzolo,
  • Andrea Celeghin,
  • Giovanni Ballin,
  • Maria Raffaella Petrara,
  • Aamir Amin,
  • Francesco Argenton,
  • Miguel Godinho Ferreira,
  • Anita De Rossi

DOI
https://doi.org/10.3390/cancers12082052
Journal volume & issue
Vol. 12, no. 8
p. 2052

Abstract

Read online

Besides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumor growth/progression through extra-telomeric functions. Our previous in vitro studies demonstrated that short-term TERT inhibition by BIBR1532 (BIBR), an inhibitor of TERT catalytic activity, negatively impacts cell proliferation and viability via telomeres’ length-independent mechanism. Here we evaluate the anti-proliferative and pro-apoptotic effects of short-term telomerase inhibition in vivo in wild-type (wt) and tert mutant (terthu3430/hu3430; tert−/−) zebrafish embryos, and in malignant human B cells xenografted in casper zebrafish embryos. Short-term Tert inhibition by BIBR in wt embryos reduced cell proliferation, induced an accumulation of cells in S-phase and ultimately led to apoptosis associated with the activation of DNA damage response; all these effects were unrelated to telomere shortening/dysfunction. BIBR treatment showed no effects in tert−/− embryos. Xenografted untreated malignant B cells proliferated in zebrafish embryos, while BIBR pretreated cells constantly decreased and were significantly less than those in the controls from 24 to up to 72 h after xenotransplantation. Additionally, xenografted tumor cells, treated with BIBR prior- or post-transplantation, displayed a significant higher apoptotic rate compared to untreated control cells. In conclusion, our data demonstrate that short-term telomerase inhibition impairs proliferation and viability in vivo and in human malignant B cells xenografted in zebrafish, thus supporting therapeutic applications of TERT inhibitors in human malignancies.

Keywords