Algorithms (Sep 2024)

IMM Filtering Algorithms for a Highly Maneuvering Fighter Aircraft: An Overview

  • M. N. Radhika,
  • Mahendra Mallick,
  • Xiaoqing Tian

DOI
https://doi.org/10.3390/a17090399
Journal volume & issue
Vol. 17, no. 9
p. 399

Abstract

Read online

The trajectory estimation of a highly maneuvering target is a challenging problem and has practical applications. The interacting multiple model (IMM) filter is a well-established filtering algorithm for the trajectory estimation of maneuvering targets. In this study, we present an overview of IMM filtering algorithms for tracking a highly-maneuverable fighter aircraft using an air moving target indicator (AMTI) radar on another aircraft. This problem is a nonlinear filtering problem due to nonlinearities in the dynamic and measurement models. We first describe single-model nonlinear filtering algorithms: the extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF). Then, we summarize the IMM-based EKF (IMM-EKF), IMM-based UKF (IMM-UKF), and IMM-based CKF (CKF). In order to compare the state estimation accuracies of the IMM-based filters, we present a derivation of the posterior Cramér-Rao lower bound (PCRLB). We consider fighter aircraft traveling with accelerations 3g, 4g, 5g, and 6g and present numerical results for state estimation accuracy and computational cost under various operating conditions. Our results show that under normal operating conditions, the three IMM-based filters have nearly the same accuracy. This is due to the accuracy of the measurements of the AMTI radar and the high data rate.

Keywords