Earth System Science Data (Jul 2022)

A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere

  • Y. Cai,
  • C. R. Duguay,
  • C. R. Duguay,
  • C.-Q. Ke

DOI
https://doi.org/10.5194/essd-14-3329-2022
Journal volume & issue
Vol. 14
pp. 3329 – 3347

Abstract

Read online

Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. The annual freeze-up and breakup dates as well as the duration of ice cover (i.e., lake ice phenology) are sensitive to the weather and climate; hence, they can be used as an indicator of climate variability and change. In addition to optical, active microwave, and raw passive microwave data that can provide daily observations, the Calibrated Enhanced-Resolution Brightness Temperature (CETB) dataset available from the National Snow and Ice Data Center (NSIDC) provides an alternate source of passive microwave brightness temperature (TB) measurements for the determination of lake ice phenology on a 3.125 km grid. This study used Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and Special Sensor Microwave Imager/Sounder (SSMIS) data from the CETB dataset to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. According to the differences in TB between lake ice and open water, a threshold algorithm based on the moving t test method was applied to determine the lake ice status for grids located at least 6.25 km away from the lake shore, and the ice phenology dates for each lake were then extracted. When ice phenology could be extracted from more than one satellite over overlapping periods, results from the satellite offering the largest number of observations were prioritized. The lake ice phenology results showed strong agreement with an existing product derived from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) data (2002 to 2015), with mean absolute errors of ice dates ranging from 2 to 4 d. Compared with near-shore in situ observations, the lake ice results, while different in terms of spatial coverage, still showed overall consistency. The produced lake ice record also displayed significant consistency when compared to a historical record of annual maximum ice cover of the Laurentian Great Lakes of North America. From 1979 to 2019, the average complete freezing duration and ice cover duration for lakes forming a complete ice cover on an annual basis were 153 and 161 d, respectively. The lake ice phenology dataset – a new climate data record (CDR) – will provide valuable information to the user community about the changing ice cover of lakes over the last 4 decades. The dataset is available at https://doi.org/10.1594/PANGAEA.937904 (Cai et al., 2021).