Scientific Reports (Jun 2024)

Preparation of porous biochar from fusarium wilt-infected banana straw for remediation of cadmium pollution in water bodies

  • Chengxiang Gao,
  • Yi Lan,
  • Yaowei Zhan,
  • Yuechen Li,
  • Jiaquan Jiang,
  • Yuanqiong Li,
  • Lidan Zhang,
  • Xiaolin Fan

DOI
https://doi.org/10.1038/s41598-024-63954-4
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The problem of cadmium pollution and its control is becoming increasingly severe issue in the world. Banana straw is an abundant bio raw material, but its burning or discarding in field not only causes pollution but also spreads fusarium wilt. The objective of this paper is to utilize biochar derived from the wilt-infected banana straw for remediation of Cd(II) pollution while to eliminate the pathogen. The activity of wilt pathogen in biochar was determined by PDA petri dish test. The Cd(II) adsorption of the biochar was determined by batch adsorption experiments. The effects of KOH concentration (0.25, 0.5 and 0.75 M) on the physicochemical characteristics of the biochar were also observed by BET, SEM, FTIR, XRD and XPS. Results showed that pristine banana straw biochar (PBBC) did not harbor any pathogen. The specific surface area (SSA) and Cd(II) adsorption capacity of 0.75 M KOH modified banana straw biochar (MBBC0.75M) were increased by 247.2% and 46.1% compared to that of PBBC, respectively. Cd(II) adsorption by MBBC0.75M was suitable to be described by the pseudo-second-order kinetic model and Freundlich isotherm. After Cd(II) adsorption, the CdCO3 were confirmed by XRD and observed through SEM. The weakness and shift of oxygen-containing functional groups in MBBC0.75M after Cd(II) adsorption implied that those groups were complexed with Cd(II). The results showed that pyrolysis could not only eliminate banana fusarium wilt, but also prepare porous biochar with the wilt-infected banana straw. The porous biochar possessed the potential to adsorb Cd(II) pollutants.

Keywords