Advances in Mechanical Engineering (Nov 2019)

Speed control of brushless direct current motor using a genetic algorithm–optimized fuzzy proportional integral differential controller

  • Huangshui Hu,
  • Tingting Wang,
  • Siyuan Zhao,
  • Chuhang Wang

DOI
https://doi.org/10.1177/1687814019890199
Journal volume & issue
Vol. 11

Abstract

Read online

In this article, a genetic algorithm–based proportional integral differential–type fuzzy logic controller for speed control of brushless direct current motors is presented to improve the performance of a conventional proportional integral differential controller and a fuzzy proportional integral differential controller, which consists of a genetic algorithm–based fuzzy gain tuner and a conventional proportional integral differential controller. The tuner is used to adjust the gain parameters of the conventional proportional integral differential controller by a new fuzzy logic controller. Different from the conventional fuzzy logic controller based on expert experience, the proposed fuzzy logic controller adaptively tunes the membership functions and control rules by using an improved genetic algorithm. Moreover, the genetic algorithm utilizes a novel reproduction operator combined with the fitness value and the Euclidean distance of individuals to optimize the shape of the membership functions and the contents of the rule base. The performance of the genetic algorithm–based proportional integral differential–type fuzzy logic controller is evaluated through extensive simulations under different operating conditions such as varying set speed, constant load, and varying load conditions in terms of overshoot, undershoot, settling time, recovery time, and steady-state error. The results show that the genetic algorithm–based proportional integral differential–type fuzzy logic controller has superior performance than the conventional proportional integral differential controller, gain tuned proportional integral differential controller, conventional fuzzy proportional integral differential controller, and scaling factor tuned fuzzy proportional integral differential controller.