Advances in Sciences and Technology (Dec 2019)
Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives
Abstract
The steel presents wide field of application. Abrasive wear resistance of steel relies mainly on microstructure, hardness as well as on the abrasive material properties. Moreover, the selection of a resistant to abrasion grade of steel seems to be still a crucial and unsolved problem. Especially due to the fact that real operation conditions can be affected by the presence of different abrasive materials. The aim of this work was to determine the effect of different abrasive grit materials i.e. garnet, corundum and carborundum on the abrasive wear result of a commonly used in industry practice steels i.e. S235, S355, C45, AISI 304 and Hardox 500. The microstructure of the steel was investigated using light optical microscopy. Moreover, hardness was measured with Vickers hardness tester. Additionally, the size and morphology of abrasive materials were characterized. The abrasion tests were conducted with the usage of T-07 tribotester (dry sand rubber wheel). The results demonstrate that the hardness and structure of steels and hardness of abrasive grids influenced the wear results. The abrasive wear behavior of steels was dominated by microscratching and microcutting wear mechanisms. The highest mass loss was obtained respectively for garnet, corundum, and carborundum. The usage of various abrasives results in different abrasion resistance for each tested steel grade. The austenitic stainless steel AISI 304 presents outstanding abrasive wear resistance while usage of corundum and Hardox 500 while using a garnet as abrasive material. C45 carbon steel was less resistant than AISI 304 for all three examined abrasives. The lowest resistance to wear in garnet and carborundum was obtained for ferritic-perlitic carbon steels S235JR and S355J2 and in corundum for Hardox 500 which presents tempered martensitic structure.
Keywords