Poultry Science (Mar 2021)
Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens
Abstract
As the poultry industry recedes from the use of antibiotic growth promoters, the need to evaluate the efficacy of possible alternatives and the delivery method that maximizes their effectiveness arises. This study aimed at expounding knowledge on the effect of the delivery method of a probiotic product (Bacillus subtilis fermentation extract) on performance and gut parameters in broiler chickens. A total of 450 fertile eggs sourced from Cobb 500 broiler breeders were randomly allotted to 3 groups: in ovo probiotic (n = 66), in ovo saline (n = 66), and noninjection (n = 200) and incubated for 21 d. On day 18.5 of incubation, 200 μL of either probiotic (10 × 106 cfu) or saline was injected into the amnion. At hatch, chicks were reallotted to 6 new treatment groups: in ovo probiotic, in ovo saline, in-feed antibiotics, in-water probiotic, in-feed probiotics, and control (corn-wheat-soybean diet) in 6 replicate cages and raised for 28 d. Of all hatch parameters evaluated, only percentage pipped eggs was found significant (P 0.05). Irrespective of the delivery method, the probiotic treatments had no significant effect on growth performance. The ileum villus width of the in ovo probiotic treatment was 18% higher than the in ovo saline group (P = 0.05) but not statistically higher than other groups. The jejunum villus height was 23% higher (P = 0.000) in the in ovo probiotic group than in the control group. There was no effect of treatment on total cecal short-chain fatty acid concentration and cecal gut microbiota composition and diversity (P > 0.05), although few unique bacteria differential abundance were recorded per treatment. Conclusively, although probiotic treatments (irrespective of the delivery route) did not affect growth performance, in ovo delivery of the probiotic product enhanced intestinal morphology, without compromising hatch performance and gut homeostasis.