Scientific Reports (Aug 2021)

Identification of de novo EP300 and PLAU variants in a patient with Rubinstein–Taybi syndrome-related arterial vasculopathy and skeletal anomaly

  • Jong Eun Park,
  • Eunmi Kim,
  • Dong-Won Lee,
  • Taek Kyu Park,
  • Min Sun Kim,
  • Shin Yi Jang,
  • Jaemyung Ahn,
  • Kwang Bo Park,
  • Keon-Ha Kim,
  • Hae-Chul Park,
  • Chang-Seok Ki,
  • Duk-Kyung Kim

DOI
https://doi.org/10.1038/s41598-021-95133-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Rubinstein–Taybi syndrome (RSTS) is a human genetic disorder characterized by distinctive craniofacial features, broad thumbs and halluces, and intellectual disability. Mutations in the CREB binding protein (CREBBP) and E1A binding protein p300 (EP300) are the known causes of RSTS disease. EP300 regulates transcription via chromatin remodeling and plays an important role in cell proliferation and differentiation. Plasminogen activator, urokinase (PLAU) encodes a serine protease that converts plasminogen to plasmin and is involved in several biological processes such as the proteolysis of extracellular matrix-remodeling proteins and the promotion of vascular permeability and angiogenesis. Recently, we discovered a patient who presented with RSTS-related skeletal anomaly and peripheral arterial vasculopathy. To investigate the genetic cause of the disease, we performed trio whole genome sequencing of the genomic DNA from the proband and the proband’s parents. We identified two de novo variants coined c.1760T>G (p.Leu587Arg) and c.664G>A (p.Ala222Thr) in EP300 and PLAU, respectively. Furthermore, functional loss of EP300a and PLAUb in zebrafish synergistically affected the intersegmental vessel formation and resulted in the vascular occlusion phenotype. Therefore, we hypothesize that the de novo EP300 variant may have caused RSTS, while both the identified EP300 and PLAU variants may have contributed to the patient’s vascular phenotype.