Nature Communications (Feb 2025)
Back to chromite as a mineralogical strategy for long-term chromium pollution control
Abstract
Abstract Re-oxidation of Cr(III) in treated Cr-contaminated sites poses a considerable source of Cr(VI) pollution, necessitating stable treatment solutions for long-term control. This study explores the immobilization of Cr(VI) into chromite, the most stable and weathering-resistant Cr-bearing mineral, under ambient conditions. Batch experiments demonstrate chromite formation at pH above 7 and Fe(III)/Cr(III) ratios exceeding 1, with Fe(III) occupying all tetrahedral sites, essential for stability. A theoretical model is developed to evaluate the effects of pH and Fe(III)/Cr(III) ratios on chromite crystallinity, resulting in AI4Min-Cr, a publicly accessible platform offering real-time intelligent remediation strategies. To tackle the complexities of non-point source Cr pollution, we employ microbial methods to regulate on-site Eh and pH, optimizing chromite precipitation. Long-term stability tests confirm that chromite remained stable for over 180 days, with potential for magnetic separation recovery. This study presents a mineralogical strategy to address re-oxidation and Cr resource recovery in Cr-contaminated water and soil.