Atmosphere (Aug 2024)
Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica
Abstract
Various stakeholders seek effective methods to communicate the potential impacts of tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and variability. This research introduces an innovative workflow utilizing GPM-IMERG satellite precipitation estimates to cluster TC rainfall spatial–temporal patterns, thereby illustrating their potential for flood hazard assessment by simulating associated flood responses. The methodology is tested using rainfall time series from a single TC as it traversed a 500 km diameter buffer zone around Dominica. Spatial partitional clustering with K-means identified the spatial clusters of rainfall time series with similar temporal patterns. The optimal value of K = 4 was most suitable for grouping the rainfall time series of the tested TC. Representative precipitation signals (RPSs) from the quantile analysis generalized the cluster temporal patterns. RPSs served as the rainfall input for the openLISEM, an event-based hydrological model simulating related flood characteristics. The tested TC exhibited three spatially distinct levels of rainfall magnitude, i.e., extreme, intermediate, and least intense, each resulting in different flood responses. Therefore, TC rainfall varies in space and time, affecting local flood hazards; flood assessments should incorporate variability to improve response and recovery.
Keywords