地质科技通报 (Mar 2021)

Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS

  • Yan Luan,
  • Xiaohui Sun,
  • Minwu Liu,
  • Ke He

DOI
https://doi.org/10.19509/j.cnki.dzkq.2021.0215
Journal volume & issue
Vol. 40, no. 2
pp. 167 – 175

Abstract

Read online

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) method is characterized by in-situ, high space resolution and high sensitivity. Therefore, the study of LA-ICP-MS in-situ trace elements analysis in magnetite has made a rapid progress and it is widely used in geological field in recent years. An analytical method for the trace elements determination of magnetite by LA-ICP-MS using Agilent 7700X inductively coupled plasma-mass spectrometry (ICP-MS) and Photo Machines Analyte Excite 193nm laser ablation was established at the laboratory of mineralization and dynamics, Chang′an University. This method adopts multiple external standards (BIR-1G, BHVO-2G, BCR-2G and GSE-1G) as calibration standards without an internal standard. Trace element compositions of the glass standard material NIST 612 and natural magmatic magnetite BC 28 were determined by the established method to evaluate its reliability. The results show that the relative standard deviation (RSD, N=30) of trace elements in NIST 612 ranges from 1.31% to 6.33%. Compared with the recommended values and the previous reference values obtained by LA-ICP-MS, the relative error of most elements in NIST 612 is smaller than 10%. The RSD (N=30) of most elements in BC 28 is lower than 10%, and the relative error of 11 important trace elements in BC 28 is smaller than 10% compared with the reported values by LA-ICP-MS. The above results show that in-situ trace element determination of magnetite can be carried out by using the method established in this study. The analysis data is accurate and reliable, and it has a great application potential.

Keywords