Energies (Sep 2024)
A Novel Fuel-Based CO<sub>2</sub> Transcritical Cycle for Combined Cooling and Power Generation on Hypersonic Aircrafts
Abstract
This study focuses on the great challenges for combined cooling and power supply on hypersonic aircrafts. To address the issues of low thermal efficiency and high fuel consumption of heat sink by the existing CO2 supercritical Brayton cycle, a novel fuel-based CO2 transcritical cooling and power (FCTCP) system is constructed. A steady-state simulation model is built to investigate the impacts of combustion chamber wall temperatures and fuel mass flow rates on the FCTCP system. Thermal efficiency of the CO2 transcritical cycle reaches 25.2~32.8% under various combustion chamber wall outlet temperatures and endothermic pressures. Compared with the supercritical Brayton cycle, the thermal efficiency of novel system increases by 54.5~80.9%. It is found from deep insights into the thermodynamic results that the average heat transfer temperature difference between CO2 and fuel is effectively reduced from 153.4 K to 16 K by split cooling of the fuel in the FCTCP system, which greatly enhances the matching of CO2–fuel heat exchange temperatures and reduces the heat exchange loss of the system. Thermodynamic results also show that, in comparison to the supercritical Brayton cycle, the cooling capacity and power generation per unit mass flow rate of working fluid in the FCTCP system increased by 75.4~80.8% and 12.9~51.6%, respectively. The FCTCP system exhibits a substantial performance improvement, significantly enhancing the key characteristic index of the combined cooling and power supply system. This study presents a novel approach to solving the challenges of cooling and power supply in hypersonic aircrafts under limited fuel heat sink conditions, laying the groundwork for further exploration of thermal management technologies of hypersonic aircrafts.
Keywords