Frontiers in Zoology (Sep 2024)
Explosive regeneration and anamorphic development of legs in the house centipede Scutigera coleoptrata
Abstract
Abstract Background Regenerating legs is advantageous for arthropods as their appendages exhibit crucial functional specializations. Many arthropods possess a ‘preferred breakage point’, where the appendage is most likely to break and where regeneration likely to occur, however, different taxa exhibit different levels of regenerative potential. Centipede appendage regeneration is categorized as 'progressive' or 'explosive'. In the later, the appendage is fully regenerated after one molt. This term was used for house centipedes that frequently lose their long legs. We chose Scutigera coleoptrata as a model to comprehensively investigate the process of leg appendotomy and regeneration as well as compare it with leg development in anamorphic instars. Results The trochanter exhibits a preferred breakage point. Internally, it houses a three-layered diaphragm that effectively seals the lumen. In case of leg loss, the wound is quickly sealed. The epidermis detaches from the cuticle and muscles of the coxa get compacted, giving sufficient space for the regenerating leg. A blastema forms and the leg then grows in a coiled manner. The regenerating leg is innervated and syncytial muscles form. If the leg is lost in an early intermolt phase, progression of regeneration is slower than when a specimen is closer to the next molt. Instars of house centipedes can simultaneously develop and regenerate legs. The legs develop laterally on the posterior segments under the cuticle. As opposed to regeneration, the progression of leg development always follows the same temporal pattern throughout the entire intermolt phase. Conclusion Several factors are of major significance in house centipede leg regeneration. First, the ease with which they lose legs: the diaphragm represents an efficient tool for appendotomy. Moreover, the functional extension of the coxa provides space for a leg to be regenerated in. Lastly, the genetic predisposition allows them to regenerate legs within one molting cycle. This “package” is unique among land arthropods, and to this degree rare in marine taxa. Furthermore, observing leg regeneration and anamorphic leg development in parallel suggest that regeneration is most likely an epiphenomenon of development, and the differences are a requirement for the novel context in which re-development occurs.
Keywords