Cancer Cell International (May 2018)

miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L

  • Jie Hao,
  • Xin Jin,
  • Yan Shi,
  • Hong Zhang

DOI
https://doi.org/10.1186/s12935-018-0552-9
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Lacrimal adenoid cystic carcinoma (LACC) is one of the most common malignancies that affects lacrimal gland. MicroRNAs are known to play a crucial role as oncogenes or tumor suppressors. Specifically, miR-93 has been reported to play a crucial role in colorectal, breast, pancreatic, lung cancer and hepatocellular carcinoma. However, the role of miR-93 in LACC and the potential molecular mechanisms involved remain unknown. Therefore, we took the challenge to determine the involvement of miR-93 in the LACC by targeting BRMS1L. Method A total of 5 adenoid cystic carcinoma (ACC) of lacrimal gland patient tissues and their plasma were examined. Three normal lacrimal glands and three normal serums were collected as a control group. After surgical resection, the specimens were preserved in liquid nitrogen and stored at − 80 °C until RNA extraction. Afterwards, LACC cells with miR-93-5p overexpression were subjected to qRT-PCR and western blot for epithelial–mesenchymal transition (EMT) markers levels. Ability of LACC cell migration, invasion, proliferation and apoptosis was examined by wounded healing, transwell, CCK-8 and apoptosis assays. Afterwards, TargetScan was used to predict putative targets of miR-93-5p. Then, the examination was performed whether miR-93-5p targets BRMS1L by the use of luciferase reporter assays and western blotting. Finally, immunohistochemical staining was sone and all the images were taken using a microscope (Nikon, Tokyo). Results Our results showed that miR-93 was overexpressed in tissues and plasma of LACC patients compared to healthy controls. MiR-93 downregulated E-cadherin expression while increasing N-cadherin expression and significantly inhibited luciferase activity. Furthermore, western blotting results confirmed that miR-93-5p could inhibit BRMS1L expression. The BRMS1L staining in LACC tissues was weaker than in normal controls. In addition, miR-93-5p revealed a reverse correlation with the expression of BRMS1L. In addition, significant upregulation of E-cadherin and downregulation of N-cadherin were found when LACC cells were transfected with BRMS1L. Finally, miR-93-5p significantly enhanced TOP/FOP luciferase activity. Upregulation of BRMS1L reduced TOP/FOP luciferase activity while further overexpression of miR-93-5p could not rescue Wnt signaling activity. Conclusions Our findings report that miR-93 promotes LACC cell migration, invasion, and proliferation via targeting downregulation of BRMS1L through regulation of Wnt signaling pathway.

Keywords