Научный вестник МГТУ ГА (Feb 2019)

SIMULATION RESULTS OF SPECKLE SUPPRESSION IN RADAR WITH SYNTHETIC APERTURE

  • R. N. Akinshin,
  • V. L. Rumyantzev,
  • A. V. Peteshov

DOI
https://doi.org/10.26467/2079-0619-2019-22-1-76-82
Journal volume & issue
Vol. 22, no. 1
pp. 76 – 82

Abstract

Read online

The disadvantage of (RLI) radar images obtained with a single-channel radar station is the presence of speckle that leads to intensity flashes increasing the number of false alarms when detecting point targets. Therefore, the detection and target distinguishing by their reflective capability (using the energy characteristics of the signal) is not effective enough. In polarimetric radar stations the formation of each image element is carried out by the output signals of four receiving channels. Joint processing of these signals allows minimizing speckle without reducing the resolution capability. The paper presents the results of the computer simulation of the suppression methods of the image speckle obtained in the polarized radar stations with the synthesized antenna aperture. The first one uses the norm of the backscattering matrix as a parameter of the intensity of the reflected signal resolution from the i-th element. The incoherent addition of the intensities obtained by sequential overview of the space with several rays is carried out in the second one. Both of these methods can be applied together. The block diagram of such processing for one strip of range is given. The computer simulation of the three-rayed suppression method of the image speckle obtained in the radar stations with the synthesized antenna aperture is carried out. As a model of the reflecting surface a random diffraction grating formed by a set of independent reflectors located at the nodes of a regular rectangular grid with a step of 1 m is chosen. In this connection the image of the grating is formed as an incoherent sum of three images obtained at different angles. The results show that the speckle effect reduces even at angular changes of the order of degree units.

Keywords