Remote Sensing (Dec 2024)
Rice Identification and Spatio-Temporal Changes Based on Sentinel-1 Time Series in Leizhou City, Guangdong Province, China
Abstract
Due to the limited availability of high-quality optical images during the rice growth period in the Lingnan region of China, effectively monitoring the rice planting situation has been a challenge. In this study, we utilized multi-temporal Sentinel-1 data to develop a method for rapidly extracting the range of rice fields using a threshold segmentation approach and employed a U-Net deep learning model to delineate the distribution of rice fields. Spatio-temporal changes in rice distribution in Leizhou City, Guangdong Province, China, from 2017 to 2021 were analyzed. The results revealed that by analyzing SAR-intensive time series data, we were able to determine the backscattering coefficient of typical crops in Leizhou and use the threshold segmentation method to identify rice labels in SAR-intensive time series images. Furthermore, we extracted the distribution range of early and late rice in Leizhou City from 2017 to 2021 using a U-Net model with a minimum relative error accuracy of 3.56%. Our analysis indicated an increasing trend in both overall rice planting area and early rice planting area, accounting for 44.74% of early rice and over 50% of late rice planting area in 2021. Double-cropping rice cultivation was predominantly concentrated in the Nandu River basin, while single-cropping areas were primarily distributed along rivers and irrigation facilities. Examination of the traditional double-cropping areas in Fucheng Town from 2017 to 2021 demonstrated that over 86.94% had at least one instance of double cropping while more than 74% had at least four instances, which suggested that there is high continuity and stability within the pattern of rice cultivation practices observed throughout Leizhou City.
Keywords