Immuno (Mar 2022)

Effect of Wild Blueberry Metabolites on Biomarkers of Gastrointestinal and Immune Health In Vitro

  • Thirumurugan Rathinasabapathy,
  • Jade Lomax,
  • Kavin Srikanth,
  • Debora Esposito,
  • Colin D. Kay,
  • Slavko Komarnytsky

DOI
https://doi.org/10.3390/immuno2020019
Journal volume & issue
Vol. 2, no. 2
pp. 293 – 306

Abstract

Read online

Wild blueberries (Vaccinium angustifolium Aiton.) are a rich source of dietary fiber and (poly)phenols with gastrointestinal and immune health-promoting properties, however, their mechanisms of action on the intestinal epithelial cells and transient tissue macrophages remain to be elucidated. In this study, we evaluated the individual effects of anthocyanins, short-chain fatty acids (metabolites derived from fiber), and a series of hydroxycinnamic and hydroxybenzoic acid metabolites common to anthocyanins and other polyphenols on epithelial gut homeostasis in human colon epithelial CCD-18 cells and murine RAW 264.7 macrophages. Gastrointestinal cell migration was enhanced in response to anthocyanin glucosides with the maximum effect observed for malvidin-3-glucoside, and a structural subset of hydroxybenzoic acids, especially 2-hydroxybenzoic acid. Enhanced staining for ZO-1 protein in the junctional complexes was observed in CCD-18 cells treated with malvidin and butyrate, as well as several phenolic metabolites, including hydroxybenzoic and hydroxycinnamic acids. Nitric oxide production and pro-inflammatory gene expression profiles in the LPS-stimulated macrophages were mostly affected by treatments with 3-caffeoylquinic (chlorogenic) and 3,4-dihydroxycinnamic (caffeic) acids, as well as 2-hydroxybenzoic acid. This study lays the foundation for future investigations evaluating the effects of dietary interventions on managing gastrointestinal and inflammatory pathophysiological outcomes.

Keywords